If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x-10=0
a = 4; b = 24; c = -10;
Δ = b2-4ac
Δ = 242-4·4·(-10)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{46}}{2*4}=\frac{-24-4\sqrt{46}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{46}}{2*4}=\frac{-24+4\sqrt{46}}{8} $
| q+-273=72 | | 1/2(-2x+8)+3=5 | | 4x+3-7x+1=19 | | h−17=49 | | 2x+1/2x=-4 | | g+19=31 | | 5-(3w-4)+4=14-2(w+1) | | 395÷5=x | | 3x2+2=14 | | 636514=7E+0.6x+37352 | | Q=7/6n+25 | | 6+b/5=-4 | | -7x+9+5x=8x-3 | | 10x+23=11x+11 | | k−20=18 | | 3x+7=3.5x | | x^2=46/121 | | b−15=69 | | 2005=2.12x+146.2 | | s+10=22 | | 5x+.5x=150 | | y=2.12(1980)+146.2 | | 6+2.5g=5+3.25g | | -7x-7=5-6x | | 9x-34+2x+42=180 | | z7=7 | | 31+3+4x=180 | | x=x+1-0.7x | | y=2.12(2005)+146.2 | | 10x+23=180 | | y=2.12(2005)+1246.2 | | 16=-r/7=21 |